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Abstract— In this paper, we investigate second order parabolic partial differential equation of a 1D heat equation. In this paper, we discuss the 
derivation of heat equation, analytical solution uses by separation of variables, Fourier Transform and Laplace Transform. Finally, we consider a problem 
of heat equation and the solution of this problem implement in computer programming. 
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——————————      —————————— 
1 History of Heat Equation 
The heat equation is an important partial differential 
equation (PDE) which describes the distribution of heat (or 
variation in temperature) in a given region over time. For 
better understanding of this paper, it is very important that 
we understand the difference between heat and 
temperature. Heat is a process of energy transfer as a result 
of temperature difference between the two points. Thus, the 
term 'heat' is used to describe the energy transferred 
through the heating process. Temperature, on the other 
hand, is a physical property of matter that describes the 
hotness or coldness of an object or environment. Therefore, 
no heat would be exchanged between bodies of the same 
temperature. 

Suppose we have a function (𝑥;  𝑦;  𝑧;  𝑡), which describes 
the temperature of a conducting material at a given 
location, (𝑥;  𝑦;  𝑧), you can use this function to determine 
the temperature at any position on the material at a future 
time, 𝑡 + 1. The function U changes over time as heat 
spreads through-out the material and the heat equation is 
used to determine this change in the function U. The 
gradient of U describes which direction and at what rate is 
the temperature changing around a particular region of the 
material.  

 

Therefore, the gradient of temperature is the ow of heat 
through the material. This gradient will help us determine 
the ow of heat through various materials. This is analogous 
to the ow of water in a pipe. 

The heat equation is a parabolic partial differential equation 
that describes the distribution of heat (or variation in 
temperature) in a given region over time. For a function 
(𝑥,𝑦, 𝑧, 𝑡) of three spatial variables (𝑥,𝑦, 𝑧) (see Cartesian 
coordinates) and the time variable t, the heat equation is: 

𝜕𝑢
𝜕𝑡

− 𝛼 �
𝜕2𝑢
𝜕𝑥2

+
𝜕2𝑢
𝜕𝑦2

+
𝜕2𝑢
𝜕𝑧2�

= 0 

More generally in any coordinate system:     

𝜕𝑢
𝜕𝑡

− 𝛼∇2𝑢 = 0 

Where α is a positive constant, and 𝛥 𝑜𝑟 𝛻2 denotes the 
Laplace operator. In the physical problem of temperature 
variation, 𝑢(𝑥,𝑦, 𝑧, 𝑡) is the temperature and α is the thermal 
diffusivity. For the mathematical treatment it is sufficient to 
consider the case 𝛼 =  1. 

Note that the state equation, given by the first law of 
thermodynamics (i.e. conservation of energy), is written in 
the following form (assuming no mass transfer or 
radiation). This form is more general and particularly 
useful to recognize which property (e.g. 𝑐𝑝 or 𝜌) influences 
which term. 

𝜌𝑐𝑝
𝜕𝑇
𝜕𝑡

− ∇. (𝑘∇𝑇) = �̇�𝑣 

Where �̇�𝑣 is volumetric heat flux. 
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The heat equation is of fundamental importance in diverse 
scientific fields. In mathematics it is the prototypical 
parabolic partial differential equation. In probability 
theory, the heat equation is connected with the study of 
Brownian motion via the Fokker-Planck equation. In 
financial mathematics it is use to solve the Black-Scholes 
partial differential equation. The diffusion equation, a more 
general version of the heat equation, arises in connection 
with the study of chemical diffusion and other related 
processes.  

The heat equation is used in probability and describes 
random walks. It is also applied in financial mathematics 
for this reason.  

It is also important in Riemannian geometry and thus 
topology: it was adapted by Richard S. Hamilton when he 
defined the Ricci flow that was later used by Grigori 
Perelman to solve the topological Poincare conjecture. 

The aim of this paper is to be able to determine the ow of 
heat of various materials i.e. different thermal 
conductivities. Does the arrangement of conductors or 
insulators affect the rate at which the heat owes? Imagine a 
room with a wall that is made of different materials such as 
wood, metal or bricks arranged in different ways. The room 
is at room temperature, say 25𝑜𝐶 and does not generate any 
heat (no air conditioner) and it is surrounded by the outside 
environment which has a temperature of 0𝑜𝐶. The room is 
so tiny relative to the outside environment therefore any 
heat ow from the room to the outside would not change the 
temperature outside. However, the temperature inside the 
room is prone to changes due to the surrounding 
temperature. How can we ensure that we maintain the 
room temperature for the longest possible time without the 
use of an air conditioner? If the walls of the room are bad 
insulators of heat, it is almost impossible to maintain the 
room temperature. This is when it is important that we 
maximize the materials and knowledge that we have to 
build a wall that would keep the room temperature 
constant. It is possible that one can just buy building 
materials with low thermal conductivity. However, the 
constraints are that we have a variety of bad and good 
thermal conductors and we are trying to build the best 
congruation with the materials that we have. 
 
To answer these questions, we have created materials with 
different thermal conductivities arranged different ways. 
We are more interested in two cases:  

I. what happens to the heat ow when we reverse the 
order of thermal conductivities and  

II. what happens when we put the materials with 
high thermal conductivities on the edges or vice 
versa. 

To test these arrangements, we will set the temperature on 
one end of the material to be at 0𝑜𝐶 and the other end at 
100𝑜𝐶. But before we get into that, let us have a look at the 
two kinds of conduction that are important to the 
understanding of this paper. 

To be able to solve the second-order partial differential heat 
equation in the spatial coordinates, we need to know the 
boundary conditions and the initial conditions. The 
boundary conditions specify how our system interacts with 
the outside surroundings. There are three general types of 
boundary conditions: Dirichlet, Neumann and Mixed 
boundary conditions. 

The heat equation in one dimension is written as the 
following: 

𝜕𝑈
𝜕𝑡

= 𝑐 �
𝜕2𝑈
𝜕𝑥2�

 

Where 𝑈(𝑥, 𝑡) is a function of temperature. 

In this case we can think of a one-dimensional rectangular 
thin wire with length x. Ignore the width and height 
dimensionality. The one end of the length of the wire is set 
at 0o C whereas the other end is set at 0𝑜𝐶. These are its 
boundary conditions. We also need to specify the 
temperature at every position on the wire at time, 𝑡𝑜 (the 
initial conditions). To solve this one-dimensional heat 
problem, we need to transform the above heat equation into 
an explicit method using the second-order central Finite 
Difference Method. Therefore, explicitly we can write the 
one-dimensional heat equation as: 

𝑈𝑗𝑛+1 − 𝑈𝑗𝑛

𝜏
= 𝛼 �

𝑈𝑗+1𝑛 − 2𝑈𝑗𝑛 + 𝑈𝑗−1𝑛

ℎ2 � 

This equation can then be implemented and solved easily 
using Mat lab or other languages. The value should be 
much smaller than 1, other-wise you get unexpected errors. 
In this case, we assume that is a constant although later we 
are going to see that alpha could be de need as a function 
that depends on space. As we can see, the heat equation in 
1-D explicit form is straight forward because the right side 
has only one term. 
 
In a metal rod with non-uniform temperature, heat 
(thermal energy) is transferred from regions of higher 
temperature to regions of lower temperature. Three 
physical principles are used here. 

I. Heat (or thermal) energy of a body with uniform 
properties: Heat 𝑒𝑛𝑒𝑟𝑔𝑦 =  𝑐𝑚𝑢, where m is the 
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body mass, u is the temperature, c is the specific 
heat, units [𝑐]  =  𝐿2𝑇 − 2𝑈 − 1 (basic units are M 
mass, L length, T time, U temperature). c is the 
energy required to raise a unit mass of the 
substance 1 unit in temperature. 

II. Fourier’s law of heat transfer: rate of heat 
transfers proportional to negative temperature 
gradient, Rate of heat transfer 𝜕𝑢 =  −𝐾𝑜 (1) area 
𝜕𝑥 where 𝐾𝑜 is the thermal conductivity, units 
[𝐾𝑜] = 𝑀𝐿𝑇 − 3𝑈 − 1. In other words, heat is 
transferred from areas of high temp to low temp. 

III. Conservation of energy: Consider a uniform rod 
of length l with non-uniform temperature lying on 
the x-axis from 𝑥 =  0 𝑡𝑜 𝑥 =  𝑙. By uniform rod, 
we mean the density ρ, specific heat c, thermal 
conductivity 𝐾𝑜, cross-sectional area A are all 
constant. Assume the sides of the rod are insulated 
and only the ends may be exposed. Also assume 
there is no heat source within the rod. 

 
2 Derivation of Heat Equation 
2.1 From Fourier’s Law  
The heat equation is derived from Fourier's law and 
conservation of energy (Cannon 1984). By Fourier's law, the 
rate of flow of heat energy per unit area through a surface 
is proportional to the negative temperature gradient across 
the surface,  

𝑞 = −𝑘𝛻𝑢 
Where k is the thermal conductivity and u is the 
temperature. In one dimension, the gradient is an ordinary 
spatial derivative, and so Fourier's law is 

𝑞 = −𝑘
𝜕𝑢
𝜕𝑥

 

In the absence of work done, a change in internal energy 
per unit volume in the material, ΔQ, is proportional to the 
change in temperature, 𝛥𝑢 (in this section only, Δ is the 
ordinary difference operator with respect to time, not the 
Laplacian with respect to space). That is, 𝛥𝑄 = 𝑐𝑝𝜌𝛥𝑢. 
Where cp is the specific heat capacity and ρ is the mass 
density of the material. Choosing zero energy at absolute 
zero temperature, this can be rewritten as 𝛥𝑄 = 𝑐𝑝𝜌𝑢. 

The increase in internal energy in a small spatial region of 
the material 𝑥 − 𝛥𝑥 ≤ 𝜉 ≤ 𝑥 + 𝛥𝑥 over the time period 
𝑡 − 𝛥𝑡 ≤ 𝜏 ≤ 𝑡 + 𝛥𝑡 is given by, 

𝑐𝑝𝜌 � [𝑢(𝜉𝑡 + ∆𝑡) − 𝑢(𝜉𝑡 + ∆𝑡)]𝑑𝜉
𝑥+∆𝑥

𝑥−∆𝑥

= 𝑐𝑝𝜌 � �
𝜕𝑢
𝜕𝜏

𝑥+∆𝑥

𝑥−∆𝑥

𝑡+∆𝑡

𝑡−∆𝑡

𝑑𝜉𝑑𝜏 

where the fundamental theorem of calculus was used. If no 
work is done and there are neither heat sources nor sinks, 
the change in internal energy in the interval [𝑥 − 𝛥𝑥, 𝑥 + 𝛥𝑥] 
is accounted for entirely by the flux of heat across the 
boundaries. By Fourier's law, this is 

𝑘 � �
𝜕𝑢
𝜕𝑡

(𝑥 + ∆𝑥, 𝜏) −
𝜕𝑢
𝜕𝑡

(𝑥 − ∆𝑥, 𝜏)� 𝑑𝜏
𝑡+∆𝑡

𝑡−∆𝑡

= 𝑘 � �
𝜕2𝑢
𝜕𝜉2

𝑥+∆𝑥

𝑥−∆𝑥

𝑡+∆𝑡

𝑡−∆𝑡

𝑑𝜉𝑑𝜏 

Again, by the fundamental theorem of calculus. By 
conservation of energy, 

� � �𝑐𝑝𝜌𝑢𝜏 − 𝑘𝑢𝜉𝜉�
𝑥+∆𝑥

𝑥−∆𝑥

𝑡+∆𝑡

𝑡−∆𝑡

𝑑𝜉𝑑𝜏 = 0 

This is true for any rectangle [𝑡 − 𝛥𝑡, 𝑡 +  𝛥𝑡]  ×  [𝑥 −
 𝛥𝑥, 𝑥 +  𝛥𝑥]. By the fundamental lemma of the calculus of 
variations, the integrand must vanish identically: 

𝑐𝑝𝜌𝑢𝑡 − 𝑘𝑢𝑥𝑥 = 0 

Which can be rewritten as: 

𝑢𝑡 =
𝑘
𝑐𝑝𝜌

𝑢𝑥𝑥   𝑜𝑟   
𝜕𝑢
𝜕𝑡

=
𝑘
𝑐𝑝𝜌

𝜕2𝑢
𝜕𝑥2

 

Which is the heat equation, where the coefficient (often 
denoted α), 𝛼 = 𝑘/𝑐𝑝𝜌 is called the thermal diffusivity. 
An additional term may be introduced into the equation to 
account for radiative loss of heat, which depends upon the 
excess temperature 𝑢 =  𝑇 −  𝑇𝑠 at a given point compared 
with the surroundings. At low excess temperatures, the 
radiative loss is approximately 𝜇𝑢, giving a one-
dimensional heat-transfer equation of the form 

𝜕𝑢
𝜕𝑡

=
𝑘
𝑐𝑝𝜌

𝜕2𝑢
𝜕𝑥2

− 𝜇𝑢 

At high excess temperatures, however, the Stefan–
Boltzmann law gives a net radiative heat-loss proportional 
to 𝑇4 − 𝑇𝑠4, and the above equation is inaccurate. For large 
excess temperatures, 𝑇4 − 𝑇𝑠4 ≈ 𝑢4 giving a high-
temperature heat-transfer equation of the form 
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𝜕𝑢
𝜕𝑡

= 𝛼 �
𝜕2𝑢
𝜕𝑥2�

− 𝑚𝑢4 

Where 𝑚 = 𝜖𝜎𝑝/𝜌𝐴𝑐𝑝. Here, σ is Stefan's constant, ε is a 
characteristic constant of the material, p is the sectional 
perimeter of the bar and A is its cross-sectional area. 
However, using T instead of u gives a better approximation 
in this case. 

 
 
2.2 Using a Rod Pipe  
Heat is the energy transferred from one body to another 
due to a difference in temperature. (Better: heat is the 
kinetic energy of the molecules that compose the material. 
Consider a long uniform tube surround by an insulating 
material like stir form along its length, so that heat can flow 
in and out only from its two ends: 
 
 

There are two basic physical principle governing the 
motion of heat.  

a) The total heat energy H contained in a uniform, 
homogeneous body is related to its temperature T 
and mass in the following simple way  

𝐻 = 𝑘𝑠𝑀𝑇  
Where 𝑘𝑠 is the specific heat capacity of the 
material ( a measurable constant specific to the 
material from with the body is made). More 
generally, in a situation for which neither the 
temperature nor the density of the material is 
constant we have 

𝐻(𝑡)

= 𝑘𝑠 � 𝜌(𝑥)𝑇(𝑥, 𝑡)𝑑𝑥… … … … … … … … … … … . (𝑖)
𝑣

 

b) The rate of heat transfer across a portion S of the 
boundary of a region R of the body is proportional 
directional derivative of T across the boundary and 
the area of contact  

𝐻𝑒𝑎𝑡 𝑓𝑙𝑢𝑥 𝑎𝑐𝑟𝑜𝑠𝑠 𝑆

= 𝜎� ∇𝑇.𝑛𝑑𝑆
𝑆

… … … … … … … … . . (𝑖𝑖)  

Where n=n(x) is the direction normal to the surface 
of contact at the point x, and 𝜎 is another constant 
specific to the material from with the body is 
constructed. 𝜎is called heat conductivity constant.  

Applying Gauss’s divergence theorem to (ii) we have 

𝐻𝑒𝑎𝑡 𝑓𝑙𝑢𝑥 𝑒𝑛𝑡𝑒𝑟𝑖𝑛𝑔 𝑜𝑟 𝑙𝑒𝑎𝑣𝑖𝑛𝑔 𝑎 𝑟𝑒𝑔𝑖𝑜𝑛 = 𝜎 � ∇𝑇.𝑛𝑑𝑆
𝜕𝑅

= 𝜎 � ∇.∇𝑇𝑑𝑥
𝑅

… … … … … … … . (𝑖𝑖𝑖) 

This should be the total rate at which heat enters or leaves 
the region R, which in turn should correspond to the rate of 
change of the total amount of heat energy contained in the 
region: 

𝑑𝐻
𝑑𝑇

= 𝑘𝑠 � 𝜌
𝑅

𝜕𝑇
𝜕𝑡
𝑑𝑥… … … … … … … … . (𝑖𝑣) 

Equating (iii) and (iv) we obtain 

𝜎� ∇.∇𝑇𝑑𝑥
𝑅

= 𝑘𝑠 � 𝜌
𝑅

𝜕𝑇
𝜕𝑡

𝑑𝑥 

Since the region R can be chosen arbitrarily, the two 
integrands must coincide at every point of the body. We 
thus obtain the heat equation  

∇2𝑇 −
𝜌𝑘𝑠
𝜎
𝜕𝑇
𝜕𝑡

= 0 

In such a situation we can assume that the temperature 
really only6 depends on the position x along the length of 
the heat pipe. Then 

∇2𝑇 ≡
𝜕2𝑇
𝜕𝑥2

+
𝜕2𝑇
𝜕𝑦2

+
𝜕2𝑇
𝜕𝑧2

≈
𝜕2𝑇
𝜕𝑥2

 

And the heat equation reduces to a 2-dimensional PDE of 
the form 

𝜕𝑇
𝜕𝑡

− 𝛼2
𝜕2𝑇
𝜕𝑥2

= 0 … … … … … … … . . (𝑣) 

𝑊ℎ𝑒𝑟𝑒, 𝛼 = �𝜌𝑘𝑠
𝜎

 

(Replacing the ratio  𝜎
𝜌𝑘𝑠

 by 𝛼2 will prove convenient later 

on.) 

Or 

We will now derive the heat equation with an external 
source, 

𝑢𝑡 = 𝛼2𝑢𝑥𝑥 + 𝐹(𝑥, 𝑡), 0 < 𝑥 < 𝐿, 𝑡 > 0, 
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where u is the temperature in a rod of length L, 𝛼2 is a 
diffusion coefficient, and 𝐹(𝑥, 𝑡) represents an external heat 
source. We begin with the following assumptions:  

• The rod is made of a homogeneous material.  
• The rod is laterally insulated, so that heat flows 
only in the x-direction.  
• The rod is sufficiently thin so that the 
temperature within any particular cross-section is 
constant.  

These last two assumptions are used to allow us to treat the 
problem as one-dimensional. As we will see, the first 
assumption is not absolutely necessary, but it does simplify 
certain solution techniques. From the principle of 
conservation of energy, it follows that the heat within a 
segment of the rod [𝑥, 𝑥 +  𝛥𝑥] satisfies the following:  
Net change inside [𝑥, 𝑥 +  𝛥𝑥] = Net inward flux across 
boundaries + Total heat generated inside [𝑥, 𝑥 +  𝛥𝑥]  
The total amount of heat, in calories, in any segment [𝑎, 𝑏] 
is given by  

�𝑐𝜌𝐴𝑢(𝑠, 𝑡)𝑑𝑠
𝑏

𝑎

 

where c is the thermal capacity of the rod (also known as 
the specific heat), ρ is the density of the rod, and A is the 
cross-sectional area of the rod. In view of our assumptions, 
c, ρ and A are constants. Also, recall that the flux from left 
to right at x = a is given by −𝑘𝑢𝑥(𝑎, 𝑡), where k is the 
thermal conductivity of the rod. Putting all of these facts 
together, we can translate the conservation relation into the 
equation 

𝑐𝜌𝐴 � 𝑢𝑡(𝑠, 𝑡)
𝑥+∆𝑥

𝑥

𝑑𝑠

= 𝑘𝐴[𝑢𝑥(𝑥 + ∆𝑥, 𝑡) − 𝑢𝑥(𝑥, 𝑡)]

+ 𝐴 � 𝑓(𝑠, 𝑡)
𝑥+∆𝑥

𝑥

𝑑𝑠 

where 𝑓(𝑥, 𝑡) is the amount of heat generated by the 
external source per unit of length per unit of time. Note that 
we must use inward flux, which is why the flux term at 
𝑥 =  𝐿 must be negated. Applying the Fundamental 
Theorem of Calculus “in reverse”, 

𝑓(𝑏) − 𝑓(𝑎) = �𝑓′(𝑠)
𝑏

𝑎

𝑑𝑠 

we obtain, after dividing both sides by A, 

𝑐𝜌 � 𝑢𝑡(𝑠, 𝑡)
𝑥+∆𝑥

𝑥

𝑑𝑠 = � 𝑘𝑢𝑥𝑥(𝑠, 𝑡) + 𝑓(𝑠, 𝑡)
𝑥+∆𝑥

𝑥

𝑑𝑠 

Rearranging yields 

� 𝑢𝑡(𝑠, 𝑡)
𝑥+∆𝑥

𝑥

𝑑𝑠 − 𝛼2𝑢𝑥𝑥(𝑠, 𝑡) − 𝐹(𝑠, 𝑡)𝑑𝑠 = 0 

𝑤ℎ𝑒𝑟𝑒, 𝛼2 = 𝑘
𝑐𝜌

, 𝐹(𝑥, 𝑡) = 1
𝑐𝜌
𝑓(𝑥, 𝑡) are the diffusivity of the 

rod and the heat source density respectively. 
Since this equation holds on an arbitrary segment of the 
rod, it follows that the integrand must vanish everywhere 
in the rod, which yields the equation 

𝑢𝑡 = 𝛼2𝑢𝑥𝑥 + 𝐹(𝑥, 𝑡) 
It is worth noting that the diffusivity 𝛼2 =  𝑘/𝑐𝜌 is 
proportional to the conductivity, but inversely proportional 
to the thermal capacity and the density. Physically, this 
makes sense because the more an object tends to store heat, 
and the denser it is, the more difficult it should be for heat 
energy to diffuse through the object, whereas the better the 
ability of the material to conduct heat, the easier it should 
be for heat energy to move through the object and diffuse. 
 
 
 
2.3 Heat equation properties  
We would like to solve the heat (diffusion) equation, 
𝑢𝑡 − 𝑘𝛥𝑢 = 0. And obtain a solution formula depending on 
the given initial data, similar to the case of the wave 
equation. However, the methods that we used to arrive at 
d’Alambert’s solution for the wave IVP do not yield much 
for the heat equation. To see this, recall that the heat 
equation is of parabolic type, and hence, it has it has only 
one family of characteristic lines. If we rewrite the equation 
in the form  

𝑘𝑢𝑥𝑥 + ⋯… … … = 0,  
Where the dots stand for the lower order terms, then you 
can see that the coefficients of the leading order terms are  

𝐴 = 𝑘,𝐵 = 𝐶 = 0 
The slope of the characteristics lines will be given by,  

𝑑𝑡
𝑑𝑥

=
𝐵 ± √∆

2𝐴
= 0 

Consequently, the single family of characteristics lines will 
be given by  

𝑡 = 𝑐 
These characteristic lines are not very helpful, since they are 
parallel to the x axis. Thus, one cannot trace points in the 𝑥𝑡 
plane along the characteristics to the x axis, along which the 
initial data is defined. Notice that there is also no way to 
factor the heat equation into first order equations, either, so 
the methods used for the wave equation do not shed any 
light on the solutions of the heat equation. Instead, we will 
study the properties of the heat equation, and use the 
gained knowledge to devise a way of reducing the heat 
equation to an ODE, as we have done for every PDE, as we 
have solved so far. 
 
3 Analytical Solution of Heat Equation 
3.1 Method of Characteristics  
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In mathematics, the method of characteristics is a technique 
for solving partial differential equations. Typically, it 
applies to first-order equations, although more generally 
the method of characteristics is valid for any hyperbolic 
partial differential equation. The method is to reduce a 
partial differential equation to a family of ordinary 
differential equations along which the solution can be 
integrated from some initial data given on a suitable hyper 
surface. The equations in the problems we have 
investigated so far are all linear and the terms containing 
the unknown function and its derivatives have constants 
coefficients. The only exception is the type of problem 
when we need to make use of polar coordinates, but in such 
problems the polar radius is present in some of the 
coefficients in a very specific way, which does not disturb 
the solution scheme. 
 
 
 
 
 
3.2 Solution of Heat Equation  
Let us now consider the solution of the 1-dimensional heat 
equation 

𝜕𝑇
𝜕𝑡

− 𝛼2
𝜕2𝑇
𝜕𝑥2

= 0 … … … … … … … … … (𝑖) 

Subject to non-homogeneous boundary conditions  
𝑇(0, 𝑡) = 𝑇1 ,𝑇(𝐿, 𝑡) = 𝑇2 ,𝑇(𝑥, 0) = 𝑓(𝑥) … … … … … … … (𝑖𝑖) 

Which might correspond to a situation where a long rod 
with an initial temperature distribution f(x) has its two ends 
inserted into different heat baths that are maintained at 
different temperatures.  
Since we expect that eventually as 𝑡→∞ the rod will 
eventually reach a steady state temperature distribution 
that is independent of time, we shall suppose that if  

𝑓𝑜𝑟 𝑡 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑙𝑎𝑟𝑔𝑒 𝑇(𝑥, 𝑡) ≈ 𝑇𝑠𝑠(𝑥)  
Where 𝑇𝑠𝑠(𝑥) is the (as yet undetermined) final steady state 
temperature distribution. Since even for large t, T(x,t) must 
still satisfy (i), (ii) , we have for sufficiently large t 

0 =
𝜕𝑇𝑠𝑠
𝜕𝑡

− 𝛼2
𝜕2𝑇𝑠𝑠
𝜕𝑥2

 =>
𝜕2𝑇𝑠𝑠
𝜕𝑥2

= 0 … … … … … … … (𝑖𝑖𝑖) 
𝑎𝑛𝑑 𝑇𝑠𝑠(0) = 𝑇1,𝑇𝑠𝑠(𝐿) = 𝑇2 … … … … … … … … . . (𝑖𝑣) 

𝑇ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 
𝜕2𝑇𝑠𝑠
𝜕𝑥2

= 0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑇𝑠𝑠 𝑖𝑠 𝑎 𝑙𝑖𝑛𝑒𝑎𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥,  
  𝑇𝑠𝑠(𝑥) = 𝐴𝑥 + 𝐵 

And the boundary conditions (iv) require the constants A 
and B to be  

𝐵 = 𝑇1  𝑎𝑛𝑑 𝐴 =
𝑇2 − 𝑇1
𝐿

 

𝑇ℎ𝑢𝑠   𝑇𝑠𝑠(𝑥) =
𝑇2 − 𝑇1
𝐿

𝑥 + 𝑇1 … … … … … … … (𝑣) 

Let us now define an auxiliary function 𝜏 (𝑥, 𝑡) by  
𝑇(𝑥, 𝑡) = 𝑇𝑠𝑠(𝑥) + 𝜏 (𝑥, 𝑡) … … … … … … … . (𝑣𝑖) 

Evidently, 𝜏(𝑥, 𝑡) represents the discrepancy between the 
actual solution and the final steady state solution. Plugging 
the righthand side of (vi) into equations (i) and (ii) we find 
(noting again 𝑑

2𝑇𝑠𝑠
𝑑𝑥2

= 0 = 𝜕𝑇𝑠𝑠
𝜕𝑡

) 
𝜕𝜏
𝜕𝑡
− 𝛼2

𝜕2𝜏
𝜕𝑥2

= 0 
𝐴𝑛𝑑 𝑇1 = 𝑇(0, 𝑡) = 𝑇𝑠𝑠(0) + 𝜏(0, 𝑡) = 𝑇1 + 𝜏(0, 𝑡) 

=> 𝜏(0, 𝑡) = 0 
𝑇2 = 𝑇(𝐿, 𝑡) = 𝑇𝑠𝑠(𝐿) + 𝜏(𝐿, 𝑡) = 𝑇2 + 𝜏(𝐿, 𝑡) 

=> 𝜏(𝐿, 𝑡) = 0 

𝑓(𝑥) = 𝑇(𝑥, 0) = 𝑇𝑠𝑠(𝑥) + 𝜏(𝑥, 0) =
𝑇2 − 𝑇1
𝐿

𝑥 + 𝑇1 + 𝜏(𝑥, 0) 

=> 𝜏(𝑥, 0) = 𝑓(𝑥) −
𝑇2 − 𝑇1
𝐿

𝑥 − 𝑇1 

𝑇ℎ𝑢𝑠 𝜏(𝑥, 𝑡) 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠   
𝜕𝜏
𝜕𝑡
− 𝛼2

𝜕2𝜏
𝜕𝑥2

= 0,
𝜏(0, 𝑡) = 0, 𝜏(𝐿, 𝑡) = 0, 𝜏(𝑥, 0) = 𝐹(𝑥) 

𝑊ℎ𝑒𝑟𝑒 𝐹(𝑥) = 𝑓(𝑥) −
𝑇2 − 𝑇1
𝐿

𝑥 − 𝑇1 

In other words, a PDE / BVP of the form (v), (vi), (vii). We 
can thus conclude from the results of the last section that 

𝜏(𝑥, 𝑡) = �𝑐𝑛

∞

𝑛=0

𝑒−�
𝛼𝑛𝜋
𝐿 �

2
𝑡 sin(

𝑛𝜋
𝐿
𝑥) ,

𝑤ℎ𝑒𝑟𝑒 𝑐𝑛 =
2
𝐿
�𝐹(𝑥)
𝐿

0

sin(
𝑛𝜋
𝐿
𝑥)𝑑𝑥 

Hence, the solution of equations (i) and (ii) is 

𝑇(𝑥, 𝑡) =
𝑇2 − 𝑇1
𝐿

𝑥 + 𝑇1 + �𝑐𝑛

∞

𝑛=0

𝑒−�
𝛼𝑛𝜋
𝐿 �

2
𝑡 sin(

𝑛𝜋
𝐿
𝑥) 

𝑤ℎ𝑒𝑟𝑒 𝑐𝑛 =
2
𝐿
��𝑓(𝑥) −

𝑇2 − 𝑇1
𝐿

𝑥 − 𝑇1�
𝐿

0

sin(
𝑛𝜋
𝐿
𝑥)𝑑𝑥 

 
3.3 Problem Solve  
(a) Problem solve by separation of variable  
Consider the initial boundary value problem  
𝜕𝑢
𝜕𝑡

=
𝜕2𝑢
𝜕𝑥2

; 0 < 𝑥 < 1,𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,𝑢(𝑥, 0) = sin 𝑥 

Solution: 𝐺𝑖𝑣𝑒𝑛 𝜕𝑢
𝜕𝑡

= 𝜕2𝑢
𝜕𝑥2

… … … … … … … (𝑖) 
𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,𝑢(𝑥, 0) = sin 𝑥… … … … … … … . . (𝑖𝑖) 

Let, 
𝑢(𝑥, 𝑡) =
𝑋(𝑥)𝑇(𝑡) … … … … . . (𝑖𝑖𝑖)    [𝑊ℎ𝑒𝑟𝑒 𝑋 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑇 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐    

𝜕𝑢
𝜕𝑡

= 𝑋𝑇′  𝑎𝑛𝑑  
𝜕𝑢
𝜕𝑥

= 𝑋′𝑇 =>
𝜕2𝑢
𝜕𝑥2

= 𝑋′′𝑇 

From equation (i) we get, 

 𝑋𝑇′ = 𝑋′′𝑇 =>
𝑇′

𝑇
=
𝑋′′

𝑋
 

Since X is a function of x and T is a function of t and they 
are equal. So they must be equal to constant. 

∴
𝑇′

𝑇
=
𝑋′′

𝑋
= −𝜆2     (𝑆𝑎𝑦) 

∴
𝑋′′

𝑋
= −𝜆2     𝑎𝑛𝑑 

𝑇′

𝑇
= −𝜆2 
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=> 𝑋′′ + 𝜆2 𝑋 = 0 … … … … … … … (𝑖𝑣),   𝑇′′ + 𝜆2 𝑇
= 0 … … … … … … … (𝑣) 

Solution of (iv) is,   
𝑋(𝑥) = 𝑐1 cos 𝜆𝑥 + 𝑐2 sin 𝜆𝑥 

Solution of (v) is,   
𝑇(𝑡) = 𝑐3𝑒−𝜆

2 𝑡 
From equation (iii) we get, 

𝑢(𝑥, 𝑡) = (𝑐1 cos 𝜆𝑥 + 𝑐2 sin 𝜆𝑥). 𝑐3𝑒−𝜆
2 𝑡 

=> 𝑢(𝑥, 𝑡) = (𝐴 cos 𝜆𝑥
+ 𝐵 sin 𝜆𝑥)𝑒−𝜆2 𝑡 … … … … … . (𝑣𝑖)  [𝑤ℎ𝑒𝑟𝑒 𝐴
= 𝑐1𝑐3 𝑎𝑛𝑑 𝐵 = 𝑐2𝑐3] 

Now, applying initial condition we get, 
𝑢(0, 𝑡) = (𝐴. 1 + 𝐵. 0)𝑒−𝜆2 𝑡 

=> 0 = 𝐴𝑒−𝜆2 𝑡 
∴ 𝐴 = 0    �𝑠𝑖𝑛𝑐𝑒 𝑒−𝜆2 𝑡 ≠ 0� 

Again,    
𝑢(1, 𝑡) = (𝐴 cos 𝜆 + 𝐵 sin 𝜆)𝑒−𝜆2 𝑡 

=> 0 = 𝐵 sin 𝜆 𝑒−𝜆2 𝑡 
=> sin 𝜆 = 0 = sin𝑛𝜋 

∴ 𝜆 = 𝑛𝜋 
Now putting the value of 𝜆 and A in (vi) we get, 

𝑢(𝑥, 𝑡) = 𝑒−𝑛2𝜋2 𝑡.𝐵 sin𝑛𝜋𝑥… … … … … … … … (𝑣𝑖𝑖) 
=> 𝑢(𝑥, 0) = 𝐵 sin𝑛𝜋𝑥 

=> sin 𝑥 = 𝐵 sin𝑛𝜋𝑥 
It is possible if 𝐵 = 1 𝑎𝑛𝑑 𝑛 = 1

𝜋
 

Now from equation (vii) we get, 
𝑢(𝑥, 𝑡) = 𝑒− 𝑡 sin 𝑥 

Which is the required solution. 
 
(b) Problem solve by Fourier Transformation 
Consider the initial boundary value problem  
𝜕𝑢
𝜕𝑡

=
𝜕2𝑢
𝜕𝑥2

; 0 < 𝑥 < 1,𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,𝑢(𝑥, 0) = sin 𝑥 

Solution: Given that, 

 
𝜕𝑢
𝜕𝑡

=
𝜕2𝑢
𝜕𝑥2

… … … … … … … (𝑖) 

Taking finite Fourier Sine Transformation, we get, 

�
𝜕𝑢
𝜕𝑡

1

0

sin
𝑛𝜋𝑥

1
𝑑𝑥 = �

𝜕2𝑢
𝜕𝑥2

1

0

sin
𝑛𝜋𝑥

1
𝑑𝑥… … … … … … … … … . (𝑖𝑖) 

𝐿𝑒𝑡, 𝑣 = 𝑣(𝑛, 𝑡) = �𝑢(𝑥, 𝑡)
1

0

sin𝑛𝜋𝑥 𝑑𝑥… … … … … … (𝑖𝑖𝑖) 

=>
𝜕𝑣
𝜕𝑡

= �
𝜕𝑢
𝜕𝑡

1

0

sin𝑛𝜋𝑥 𝑑𝑥 = �
𝜕2𝑢
𝜕𝑥2

1

0

sin𝑛𝜋𝑥 𝑑𝑥 

=>
𝜕𝑣
𝜕𝑡

= �
𝜕𝑢
𝜕𝑡

sin𝑛𝜋𝑥�
0

1

− �𝑛𝜋
1

0

cos𝑛𝜋𝑥 .
𝜕𝑢
𝜕𝑡
𝑑𝑥

= 0 − 𝑛𝜋�
𝜕𝑢
𝜕𝑡

1

0

cos𝑛𝜋𝑥 𝑑𝑥 

=>
𝜕𝑢
𝜕𝑡

= −𝑛𝜋[𝑢(𝑥, 𝑡) cos𝑛𝜋𝑥]01

+ 𝑛𝜋�(−𝑛𝜋 sin𝑛𝜋𝑥)
1

0

𝑢(𝑥, 𝑡)𝑑𝑥 

=>
𝜕𝑣
𝜕𝑡

= 0 − 𝑛2𝜋2 �𝑢(𝑥, 𝑡)
1

0

sin𝑛𝜋𝑥 𝑑𝑥             [∵ 𝑈(0, 𝑡)

= 𝑈(1, 𝑡) = 0] 

=>
𝑑𝑣
𝑑𝑡

= −𝑛2𝜋2𝑣           [𝐹𝑟𝑜𝑚 (𝑖𝑖𝑖)]  

=>
𝑑𝑣
𝑣

= −𝑛2𝜋2𝑑𝑡 

=> ln 𝑣 = −𝑛2𝜋2𝑡 + ln𝐴      [𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑛𝑔] 

=> 𝑣 = 𝐴𝑒−𝑛2𝜋2𝑡 … … … … … … … … … … … (𝑖𝑣) 

=> 𝑣(𝑛, 𝑡) = 𝐴𝑒−𝑛2𝜋2𝑡 

=> 𝑣(𝑛, 0) = 𝐴       [𝑎𝑡 𝑡 = 0] 

=> �𝑢(𝑥, 0)
1

0

sin𝑛𝜋𝑥 𝑑𝑥 = 𝐴 

=> � sin 𝑥
1

0

sin𝑛𝜋𝑥 𝑑𝑥 = 𝐴                   [∵ 𝑈(𝑥, 0) = sin 𝑥] 

=> 𝐴 =
1
2

 � 2 sin 𝑥
1

0

sin𝑛𝜋𝑥 𝑑𝑥

=
1
2

 �[cos(𝑛𝜋 − 1)𝑥 − cos(𝑛𝜋 + 1)𝑥]
1

0

𝑑𝑥 

=> 𝐴 =
1
2

 � cos(𝑛𝜋 − 1)𝑥
1

0

𝑑𝑥 −
1
2

 � cos(𝑛𝜋 + 1)𝑥
1

0

𝑑𝑥 

=> 𝐴 =
1
2 �

cos(𝑛𝜋 − 1)𝑥
(𝑛𝜋 − 1) �

0

1

−
1
2 �

cos(𝑛𝜋 + 1)𝑥
(𝑛𝜋 + 1) �

0

1

 

=> 𝐴 =
1
2 �

cos(𝑛𝜋 − 1)
(𝑛𝜋 − 1) −

cos(𝑛𝜋 + 1)
(𝑛𝜋 + 1) � 

∴ 𝑣 =
1
2
𝑒−𝑛2𝜋2𝑡 �

cos(𝑛𝜋 − 1)
(𝑛𝜋 − 1) −

cos(𝑛𝜋 + 1)
(𝑛𝜋 + 1) � 

By inverse Sine Transformation we get, 

𝑢(𝑥, 𝑡) =
2
1
�

1
2
𝑒−𝑛2𝜋2𝑡 �

cos(𝑛𝜋 − 1)
(𝑛𝜋 − 1) −

cos(𝑛𝜋 + 1)
(𝑛𝜋 + 1) �

∞

𝑛=1

sin𝑛𝜋𝑥 

𝑢(𝑥, 𝑡) = �𝑒−𝑛2𝜋2𝑡 �
cos(𝑛𝜋 − 1)

(𝑛𝜋 − 1) −
cos(𝑛𝜋 + 1)

(𝑛𝜋 + 1) �
∞

𝑛=1

sin𝑛𝜋𝑥 
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Which is our required solution. 

(b) Problem solve by Laplace Transformation 
Consider the initial boundary value problem  
𝜕𝑢
𝜕𝑡

=
𝜕2𝑢
𝜕𝑥2

; 0 < 𝑥 < 1,𝑢(0, 𝑡) = 𝑢(1, 𝑡) = 0,𝑢(𝑥, 0) = sin 𝑥 

Solution: Given that 
𝜕𝑢
𝜕𝑡

=
𝜕2𝑢
𝜕𝑥2

… … … … … … … (𝑖) 

Now taking Laplace Transformation on both sides we get, 

𝐿 �
𝜕𝑢
𝜕𝑡�

= 𝐿 �
𝜕2𝑢
𝜕𝑥2

� 

=> 𝑠𝑢 − 𝑢(𝑥, 0) =
𝑑2𝑢
𝑑𝑥2

 

=>
𝑑2𝑢
𝑑𝑥2

− 𝑠𝑢 = −𝑢(𝑥, 0) 

=>
𝑑2𝑢
𝑑𝑥2

− 𝑠𝑢 = − sin 𝑥… … … … … . (𝑖𝑖) 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝑐1𝑒√𝑠𝑥 + 𝑐2𝑒−√𝑠𝑥 

𝑃. 𝐼 = −
sin 𝑥
𝐷2 − 𝑠

=
sin 𝑥
𝑠 + 1

 

Therefore, the general solution of (ii) is 

𝑢(𝑥, 𝑠) = 𝑐1𝑒√𝑠𝑥 + 𝑐2𝑒−√𝑠𝑥 +
sin 𝑥
𝑠 + 1

… … … … … … (𝑖𝑖𝑖) 

Now, 𝑢(0, 𝑡) = 0 
=> 𝐿{𝑢(0, 𝑡)} = 0 
=> 𝑢(0, 𝑠) = 0 

Again, 𝑢(1, 𝑡) = 0 
=> 𝐿{𝑢(1, 𝑡)} = 0 
=> 𝑢(1, 𝑠) = 0 

Now using the 1st condition in (iii) we get, 

𝑢(0, 𝑠) = 𝑐1 + 𝑐2 
=> 𝑐1 + 𝑐2 = 0 
=> 𝑐1 = −𝑐2 

Now using the 2nd condition in (iii) we get, 

𝑢(1, 𝑠) = 𝑐1𝑒√𝑠 + 𝑐2𝑒−√𝑠 +
sin 1
𝑠 + 1

 

=> 𝑐1𝑒√𝑠 − 𝑐1𝑒−√𝑠 + 0 = 0     

�𝑠𝑖𝑛𝑐𝑒 sin 1 = 0.017 so we can write 
sin 1
𝑠 + 1

= 0� 

=> 𝑐1�𝑒√𝑠 − 𝑒−√𝑠� = 0 
=> 𝑐1 = 0  

∴ 𝑐1 = 𝑐2 = 0 

Thus equation (iii) becomes, 

𝑢(𝑥, 𝑠) =
sin 𝑥
𝑠 + 1

 

Taking inverse Laplace Transformation we get, 

𝑢(𝑥, 𝑡) = 𝑒−𝑡 sin 𝑥 

Which is the required solution. 

4 Experiments and results 
We develop a computer program (code) in Matlab 
programming of scientific computing and implement 
analytic solution for a heat equation. The main parts of the 
implementation of our analytic scheme are given as in the 
following algorithm: 
 
Input: nt and nx are the numbers of grid points of time and 
space respectively. k and h are the right end points of [0,k] 
and [0,h].  
uo is as a initial condition and ua as a boundary condition.  
Output: u(t,x) is the solution matrix. 

Step 1: Initialization:  
k=t(2)-t(1);  
h=x(2)-x(1); 

Step 2: Calculation of Analytic solution:  
for e=2:nt  

for f=2:nx  
z(e,f)=exp(-t(e))*sin(x(f));  

end  
end  

end  
surf(t,x,u)  
title('Figure of Numerical Scheme');  
xlabel('t-axis'); 

ylabel('x-axis');  
Step 3: Print u(t,x)  
Step 4: Stop  
 

To test the accuracy of the implementation of the analytic 
scheme, we consider the heat equation. Now we show our 
results: 
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5 Conclusion  
In this paper we have considered the second order heat 
equation. First, we have shown that fundamentals of heat 
equation, analytical solution by using separation of variable 
method, Fourier transform method and Laplace transform 
method. Finally, we show the analytical solution in Matlab 
computer programming. In future work, we implement the 
numerical scheme and also compare in heat equation 
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